Im Gehirn arbeiten Milliarden von Nervenzellen. Sie stehen über elektrische Ströme in Kontakt. Diese Aktivität kann mittels Elektroenzephalografie schmerzfrei gemessen werden - ein Standardverfahren in der Neurologie, um beispielsweise krankhafte Veränderungen im Gehirn zu untersuchen. Für viele Fragen der Arbeitsforschung wird die Methode ebenfalls eingesetzt, um die kognitive Leistungsfähigkeit zu erfassen: Experten können zum Beispiel untersuchen wie Probanden auf Stress oder Ablenkungen reagieren, wie gut sie sich bei komplexen Aufgaben konzentrieren und wie sie Informationen verarbeiten können.
Um die EEG-Daten zu bekommen, muss die Versuchsperson verkabelt werden: Eine Kappe mit 64 Elektroden wird befestigt, alle Elektroden werden mit Leitgel versehen, weshalb sich die Versuchsperson im Anschluss die Haare waschen muss. Dieser aufwendige und stark kontrollierte Prozess kann ablenken und die Akzeptanz des Trägers mindern. An praktischeren Alternativen wird bereits geforscht: Ein Expertenteam der Universität Oldenburg hat ein c-förmiges Miniatur-EEG namens cEEGrid entwickelt, das sich wie ein dünnes Aufklebetattoo hinter die Ohren schnell und unkompliziert anbringen lässt. Die Aufzeichnung der Signale kann dabei auch drahtlos erfolgen - der Träger ist mobil und das cEEGrid fällt im Gegensatz zur Kappe nicht auf.
Datenvergleich von EEG-Kappe und Mini-EEG
Wie verlässlich die Daten dieser Technologie im Hinblick auf kognitive Parameter sind, haben Forscher des Leibniz-Instituts für Arbeitsforschung an der TU Dortmund (IfADo) untersucht. Dazu hat das Team um Dr. Marlene Pacharra die Daten von Probanden gegenübergestellt, die eine Aufgabe am PC lösen mussten. Dabei wurde das EEG sowohl mittels Kappe als auch via Mini-EEG abgeleitet. Da es sich bei der Aufgabe um einen seit Jahrzehnten in der Psychologie angewandten Test handelte, war für die Forscher absehbar, wie sich das mit der Kappe abgeleitete EEG verhalten müsste.
"Wir konnten zeigen, dass Form und Gestalt des Mini-EEGs bei visuellen und kognitiven Parametern denen der Kappe ähneln", sagt Pacharra. "Allerdings sind diese Signale beim Mini-EEG vergleichsweise schwach." In folgenden Studien soll der Algorithmus, der die Daten des EEG analysiert, weiter angepasst werden, um Störsignale, die durch Bewegung entstehen, besser isolieren zu können und so die Signalqualität zu erhöhen.
"Gelingt es auch mobil ein deutliches EEG abzuleiten, dann könnten wir in einem nächsten Schritt die kontrollierten Laborbedingungen verlassen. Arbeitsplatzsimulationen mit dem EEG hinterm Ohr könnten folgen", sagt Julian Reiser, Doktorand in dem Projekt.
Das IfADo ist eines von 14 Mitgliedern von Leibniz Gesundheitstechnologien und führt auch in diesem Leibniz-Forschungsverbund vergleichende Untersuchungen neuer medizinischer Technologien durch. Dies ermöglicht eine detaillierte und frühe Einschätzung des Anwendernutzens und fördert die zielgerichtete Optimierung innovativer Medizinprodukte.
_______________
Hintergrund:
Die Idee, Hirnströme mittels eines Mini-EEGs hinter dem Ohr zu messen, stammt aus dem Team um den Oldenburger Neuropsychologen Prof. Stefan Debener. Die Finanzierung der ersten Version des cEEGrids stammte aus dem DFG Exzellenzcluster "Hearing4All". Debener und Kollegen, sowie die Forscher des IfADo haben keine finanzielle Beziehung zu der Herstellerfirma der cEEGrids und profitieren finanziell nicht an ihrem Verkauf. Debener und Kollegen verfolgen das Ziel tragbare Mini-EEG Lösungen zu entwickeln und sie der Forschungsgemeinschaft zur Verfügung zu stellen (www.ceegrid.com).
_______________
Publikation:
Pacharra, M., Debener, S., Wascher, E. (2017): Concealed around-the-ear EEG captures cognitive processing in a visual Simon task. Front. Hum. Neurosci. 11:290. Doi: 10.3389/fnhum.2017.00290
_______________
Ansprechpartnerin:
Dr. Marlene Pacharra
Wissenschaftliche Mitarbeiterin Ergonomie
IfADo - Leibniz-Institut für Arbeitsforschung an der TU Dortmund
Telefon: + 49 231 1084-371
E-Mail: pacharra@ifado.de